Inverse Relations

These notes are intended as a summary of section 3.5 (p. 235 - 242) in your workbook. You should also read the section for more complete explanations and additional examples.

The graphs of y = 2x + 4 and $y = \frac{1}{2}x - 2$ are shown on the axes to the right. The graph of $y = \frac{1}{2}x - 2$ is the graph of y = 2x + 4 after a reflection in the line y = x.

Consider the following points on each graph:

Point on $y = 2x + 4$	Point on $y = \frac{1}{2}x - 2$
(1,6)	(6,1)
(0,4)	(4,0)
(-2,0)	(0,-2)

Notice that the coordinates of corresponding points are interchanged. $y = \frac{1}{2}x - 2$ is the **inverse** of the function y = 2x + 4.

Reflecting in the Line y = x

In general, the graph of x = f(y) is the image of the graph of y = f(x) after a reflection in the line y = x. y = f(x) and x = f(y) are said to be **inverses** of each other.

For every point (x, y) on y = f(x), there is a corresponding point (y, x) on x = f(y).

When the inverse is also a function, the notation $f^{-1}(x)$ is used to denote the **inverse function**. For example, when f(x) = 2x + 4, then $f^{-1}(x) = \frac{1}{2}x - 2$.

Note: To determine if the inverse is a function, use the vertical line test.

Example 1 (sidebar p. 237)

Here is the graph of y = g(x).

- a) Sketch the graph of its inverse on the same grid.
- b) Is the inverse a function? Explain.

c) State the domain and range of the function and its inverse.

Domain and Range

The domain of y = f(x) is the range of x = f(y), and the range of y = f(x) is the domain of x = f(y).

Determining an Equation of the Inverse

To determine an equation for the inverse of a function, interchange x and y in the equation of the function, then solve the resulting equation for y.

For example, to determine the equation of the inverse of y = -3x + 7:

Example 2 (sidebar p. 238)

a) Determine an equation of the inverse of $y = -x^2 + 4$.

b) Sketch graphs of $y = -x^2 + 4$ and its inverse.

c) Is the inverse a function? Explain.

Think Further (bottom of p. 239)

When is the inverse of a function also a function?

It is possible to predict whether or not an inverse of a function will also be a function. To do so, perform a horizontal line test on the original function. If the original function passes the horizontal line test, then its inverse will be a function. If the original function fails the horizontal line test, then its inverse won't be a function.

Example 3 (sidebar p. 240)

Determine two ways to restrict the domain of $y = (x-1)^2 + 3$ so that its inverse is a function. Write the equation of the inverse each time. Use a graph to illustrate each way.

Example 4 (sidebar p. 241)

a) Determine algebraically whether the functions in each pair are inverses of each other.

i)
$$y = 3x - 6$$
 and $y = \frac{x - 6}{3}$

ii)
$$y = -x^2 + 3, x \ge 0$$
 and $y = \sqrt{3-x}$

b) Verify the answers to part a graphically.

Homework: #4 - 13 in the exercises (p. 243 - 249). Answers on p. 250.