Inverse Relations

These notes are intended as a summary of section 3.5 (p. $235-242$) in your workbook. You should also read the section for more complete explanations and additional examples.

The graphs of $y=2 x+4$ and $y=\frac{1}{2} x-2$ are shown on the axes to the right. The graph of $y=\frac{1}{2} x-2$ is the graph of $y=2 x+4$ after a reflection in the line $y=x$.

Consider the following points on each graph:

Point on $y=2 x+4$	Point on $y=\frac{1}{2} x-2$
$(1,6)$	$(6,1)$
$(0,4)$	$(4,0)$
$(-2,0)$	$(0,-2)$

Notice that the coordinates of corresponding points are interchanged. $y=\frac{1}{2} x-2$ is the inverse of the function $y=2 x+4$.

Reflecting in the Line $\boldsymbol{y}=\boldsymbol{x}$

In general, the graph of $x=f(y)$ is the image of the graph of $y=f(x)$ after a reflection in the line $y=x . y=f(x)$ and $x=f(y)$ are said to be inverses of each other.

For every point (x, y) on $y=f(x)$, there is a corresponding point (y, x) on $x=f(y)$.
When the inverse is also a function, the notation $f^{-1}(x)$ is used to denote the inverse function.
For example, when $f(x)=2 x+4$, then $f^{-1}(x)=\frac{1}{2} x-2$.

Note: To determine if the inverse is a function, use the vertical line test.

Example 1 (sidebar p. 237)

Here is the graph of $y=g(x)$.
a) Sketch the graph of its inverse on the same grid.
b) Is the inverse a function? Explain.
c) State the domain and range of the
 function and its inverse.

Domain and Range

The domain of $y=f(x)$ is the range of $x=f(y)$, and the range of $y=f(x)$ is the domain of $x=f(y)$.

Determining an Equation of the Inverse

To determine an equation for the inverse of a function, interchange x and y in the equation of the function, then solve the resulting equation for y.

For example, to determine the equation of the inverse of $y=-3 x+7$:

Example 2 (sidebar p. 238)

a) Determine an equation of the inverse of $y=-x^{2}+4$.
b) Sketch graphs of $y=-x^{2}+4$ and its inverse.

c) Is the inverse a function? Explain.

Think Further (bottom of p. 239)

When is the inverse of a function also a function?
It is possible to predict whether or not an inverse of a function will also be a function. To do so, perform a horizontal line test on the original function. If the original function passes the horizontal line test, then its inverse will be a function. If the original function fails the horizontal line test, then its inverse won't be a function.

Example 3 (sidebar p. 240)

Determine two ways to restrict the domain of $y=(x-1)^{2}+3$ so that its inverse is a function. Write the equation of the inverse each time. Use a graph to illustrate each way.

Example 4 (sidebar p. 241)

a) Determine algebraically whether the functions in each pair are inverses of each other.
i) $y=3 x-6$ and $y=\frac{x-6}{3}$
ii) $y=-x^{2}+3, x \geq 0$ and $y=\sqrt{3-x}$
b) Verify the answers to part a graphically.

Homework: \#4-13 in the exercises (p. 243 - 249). Answers on p. 250.

